

Rural
Community
Assistance
Partnership

Improving rural quality of life, starting at the tap

Goals for today

RCAP Background & Impact

Orient RD staff on RCAP's programs for small drinking water systems

Examples RCAP's work with systems dealing with lead issues

National Network

Services by Region

Environmental

Leadership/Capacity

Building/Economic

Development

Lending

Environmental

Housing

Community & Economic Dev.

Leadership/Capacity Building

Lending

Environmental

Housing

Community & Economic

Development

Leadership/Capacity

Building

Environmental

Housing/rental assistance

Leadership/Capacity
Building

Environmental

Housing

Community

Development & lending

Leadership/Capacity

Building

Environmental

Technical Support

Entrepreneurship & Economic Development Leadership/Capacity Building

RCAP Impact

Some stats driving our work

93.5% of public water systems are serving communities with 3,300 people or fewer.

\$74.4 Billion is the U.S. EPA -estimated amount small community water systems need to maintain and update infrastructure. *This need is estimated for systems serving 23.4 million people.

3.68 jobs are added to the national economy to support each job added in the water and wastewater sector

10-20: Jobs are added in the U.S. for each \$1 million invested in water supply and treatment infrastructure

RCAP Impact

In Fiscal Year
2018, the RCAP
Network –
through
nationally funded
projects – served
approximately:

2.5 million:

538,000:

639,880:

1+ million: 1,457:

rural residents

residents living in poverty

residents identifying as people of color

households communities

TA Mapped with Per Capita Income (2018)

The Most Projects Aim to Assist Communities with Achieving Compliance with State and Federal Regulations and Financial Sustainability

Leveraged Funds

In FY18, RCAP helped 71 communities in 28 states leverage approximately \$145.5M in additional funding

98% of this total was achieved under USDA-funded TA

68% was awarded in the form of loans

Sources of leveraged funds: USDA, CDBG, States and SRFs, Regional

Overview of RCAP Programs for Small Systems

Technitrain

Goals for 2019-20:

- Assist at least 780 systems includes tribes
- Present 150 training sessions to at least 1000 system board members and personnel
- Assist in completing 72
 vulnerability assessments
 and 72 emergency response
 plans

GIS Component

GIS Goals for 2019-20:

Assist **42 communities** in the mapping of a water or wastewater system—or both — for communities eligible for USDA's

Each community will have a working map of their system in the ESRI ArcGIS Online multi-tenant environment under this program

Training of one or more operators, community members, or utility staff such that they have the capacity to sustain the map of their system

Technitrain

Goals for 2019-20:

Systems determined to be financially unsustainable will achieve sustainability

Systems out of compliance with the SDWA or CWA will be brought into compliance

\$80 million in federal, state, and other funding—for new systems, system replacement, and other facilities improvements

The **South Berwick (Maine)** Water District had old, outdated infrastructure and was in need of asset management planning to help them prioritize and set aside funds for needed system upgrades.

Through USDA Technical Assistance and Training funds, RCAP helped the district develop an Asset Management Plan as well as a Capital Improvement Plan to prioritize projects and set aside funding reserves over time to make the system more financially sustainable as well as avoid rate shock and unaffordability for system customers.

RCAP Drinking Water Compliance

- Purpose: On-site technical assistance and training with a focus on compliance/health concerns in drinking water systems (serving 10,000 or fewer people)
- 318 on-site technical assistance projects in all 50 states
- 270 customized trainings in all 50 states

Assistance Types

- Compliance and Environmental Health
- Operations and Maintenance

Examples of RCAP's Work on Lead

- Understanding lead issues
- Training
- Technical assistance
 - Lead monitoring plans
 - Inventories

Health-based vs. monitoring/reporting LCR violations for small systems (population 10K and smaller)

Training

RCAP/AWWA compliance training curriculum

Lead and Copper Rule E-learning (2020)

Training

RCAP/AWWA compliance training curriculum

Lead and Copper Rule E-learning (2020)

Midwest Assistance Project (MAP) Region 8 training

Ohio RCAP - Mapping Lead Service Line Probability in Small Water Systems

Source: Brain Beyeler, Great Lakes RCAP

Ohio EPA Lead (Pb) Rules

All public water systems were required to submit lead service line probability maps in March 2017, and updates will be required every five years.

- Lead and copper sampling
- Map distribution systems
- Identify all potential lead sources
- Map public and private service lines
- Description of buildings
- Protection of residents

https://epa.ohio.gov/ddagw/pws/leadandcopper/map

Process

- Meet in person or via video conference
- Complete interview questions
- Review map with parcel or address data
- Review records

Lead Mapping in Distribution Systems Meeting

AGENDA

1. Meeting Purpose:

In June of 2016, HB 512 was passed to enact section 6109.121 of the Ohio Ravised Code (ORC) to establish requirements governing lead and copper testing for community and non-transient non-community public water systems and to revise law governing lead contamination from plumbing fixtures. The law also requires community water systems to identify and map areas of better distribution systems which may contain lead service lines and to identify the characteristics of buildings and areas of the distribution system with solder, fixtures or pipes containing lead. Non-transient non-community water systems are required to map areas of the system that have solder, fixtures and pipes containing lead. These rules were just finalized on January 6°, 2017 and released to the public on January 11°. The maps and report are due by March 9°, 2017.

2. Meeting Checklist

- □ Raview ownership and responsibility of service lines according to the community's water rules and regulations. We will include a statement on the map or accompanying report that explains property owners' responsibility for maintenance and replacement of service lines vs. that of the water system. If possible, find outhow long these rules have been in place.
- ☐ Identify the areas and, if available, parcels that are served by the utility. If parcel data is not available, we will at least need an address list, unless we can clip address point data from an existing LBSs database on the OGRIP website.
- ☐ Have a street map ready to draw in the distribution system, or if available, a map of the distribution system ready to mark up. Draw in distribution lines and note the approximate age, and material. Confirm whether or not lead may exist in the pipe joint, fittings or valves or meters. We should include a statement describing where lead may be found in the distribution mains, and we can color code the pipes where it is known to exist.
- Confirm whether or not any local building codes, water rules and regulations, or other and regulatory changes were adopting prohibiting the use of lead service lines before 1998, and plumbing materials and solder before 1998.
- ☐ Review maps that display year built data in parcel or address point form.
 - ☐ Are there known lead lines on the public side?

The Data Dilemma

Sources:

- As-builts/drawings
- Tap cards
- Operator knowledge
- Building permits

Process

- Find Data
- 2. Join data to GIS
- 3. Symbolize by year built
- Assign value to known
- 5. Assign probability value to unknown

DE	ITS_EDITED_BELLAIRE	_88					
1	Year Built	Private	Public	LEAD Score	ParcelNumber	ADDR	SUBDIV
1	1900	6	6	66	26-00399.000	57618 PINCH RUN	
1	1920	6	6	66	26-00773.000	62778 CEMENT MILL	
1	1920	6	6	66	26-01438.000	62790 CEMENT MILL	
1	1900	6	6	66	26-00513.000	62820 CEMENT MILL	
1		77	77	7777	26-00543.000	62860 CEMENT HILL	
1	1993	3	3	33	29-03353.000	399 QUINCE LANE	N/A
1	1900	6	6	66	29-00721.000	393 12TH	FLORENCE PLAT
1	1900	6	6	66	29-01290.000	385 FLORENCE	FLORENCE PLAT
1	1900	6	6	66	29-02395.000	381 12TH	FLORENCE PLAT
1		77	77	7777	29-02894.000	377 FLORENCE	FLORENCE PLAT
1	1900	6	6	66	29-02424.000	373 12TH	FLORENCE PLAT
1	1900	6	6	66	29-03008.000	369 12TH	FLORENCE PLAT
1	1900	6	6	66	29-00803.000	365 12TH	FLORENCE PLAT
1		77	77	7777	29-02797.000	12 TH	N/A
1		77	77	7777	29-00401.000	12 TH	FLORENCE PLAT
1	1900	6	6	66	29-00400.000	357 12TH	FLORENCE PLAT
1	1908	6	6	66	29-00921.000	353 FLORENCE	FLORENCE PLAT
1	1900	6	6	66	29-02052.000	349 12TH	FLORENCE PLAT
4	1900	6	6	66	29-01986.001		N/A
-	1948	1	1		29-02729.000	345 12TH	FLORENCE PLAT
4	1900	6	6		29-02248.000	341 12TH	FLORENCE PLAT
4	1900	6	6		29-01849.000	337 12TH	FLORENCE PLAT
1		77	77		29-01851.000	12 TH	FLORENCE PLAT
1		77	77		29-03893.000	12 TH	T ESTILITOE T E TI
1	1950	1	1		29-01850.000	329 12TH	FLORENCE PLAT
4	1944	1	1		29-01587.000	12 TH	T EGITENOE T EN
-	1900	6	6		29-02817.000	325 12TH	FLORENCE PLAT
4	1944	1	1		29-01587.000	12 TH	N/A
┨	1344	77	77		29-01943.000	323 12TH	FLORENCE PLAT
┪	1944	1	1		29-01587.000	12 TH	N/A
-	1900	6	6		29-02425.000	1361 BELMONT	HEATHERINGTONS FOURT
_	1900	6	6		29-01110.000	1395 BELMONT	HEATHERINGTONS FOURT
	1900	6	6		29-03358.000	1475 BELMONT	HEATHERINGTONS FOUR
_	1924	1	1		29-00536.000	1477 BELMONT ST-1479 BELMONT	HEATHERINGTONS FOUR
4	1915	6	6		29-0330.000	1483 BELMONT	HEATHERINGTONS FOURT
_	1961	2	2		29-01164.000	1485 BELMONT	HEATHERINGTONS FOURT
4	1900	6	6		29-02432.000	1499 GUERNSEY	N/A
4	1900	6	6		29-02432.000	1487 BELMONT	HEATHERINGTONS FOURT
+	1900	77	77		29-01313.000	1487 BELMONT	HEATHERINGTONS FOURT
+	1916	6	6				HEATHERINGTONS FOUR
4	1910	_	_		29-01174.000	1495 BELMONT	
4	1998	77	77		29-01173.000	1495 BELMONT	N/A HEATHERINGTONS FOURT

Data Analysis

- 1. Find Data
- 2. Join data to GIS
- 3. Symbolize by year built
- 4. Assign value to known
- 5. Assign probability value to unknown

Public Private	Symbol representing single service lin	е
Materia	al of Service Line Known	
	Lead · · · · · · · · ·	
	≤ 8% Alloy (1998-2013)	
	Non-Lead	
	pility of Lead Service Line ned by year structure was built	
	Very High (1921-1950)	
	Mild (1951- 1980)	w-
	Very Low (1981-1997)	
	No Data	

Data Analysis

- 1. Find Data
- 2. Join data to GIS
- 3. Symbolize by year built
- 4. Assign value to known
- 5. Assign probability value to unknown

Results

Public Service Line Lead Probability Possibility of Lead Public Lines # % of System		
Possibility of Lead	Public Lines #	% of System
Very Likely or Verified Lead	64	9.10%
Non-Lead	83	11.81%
≤8% Lead Alloy	35	4.98%
Very High Probability	225	32.01%
Moderate Probability	206	29.30%
Low Probability	37	5.26%
No Data	53	7.54%

Private Service Line Lead Probability			
Possibility of Lead	Private #	% of System	
Very Likely or Verified Lead	64	9.10%	
Non-Lead	6	0.85%	
≤ 8% Lead Alloy	35	4.98%	
Very High Probability	266	37.84%	
Moderate Probability	239	34.00%	
Low Probability	40	5.69%	
No Data	53	7.54%	

Results

Village of Bellaire Public Water System Lead (Pb) Components PWSID# OH-0700114 Prepared February 2017

To comply with Section 6109.121 of the Ohio Revised Code, enacted in September 2016, the Village of Bellaire in Belmont County, Ohio has created the following report and attached map to identify known and potential components of water service lines that contain lead (Pb).

RCAP staff and the Village of Bellaire Water Department met on February 10th, 2017 to review a map of the service area. A list of known locations of lead service lines (LSLs) that are still being used, and locations where LSLs have been replaced were compiled by the Village of Bellaire Water Department. That list only accounted for about 5% of the service lines in the system. No applicable historical maintenance and operation records, tap cards, or as-builts were available to identify other LSL locations.

Public and Private Ownership of Service Lines

Page 1 of 4 Bellaire PWS Lead Map

The Village owns and maintains service lines from the water distribution mains up to the curb stops. The remainder of each service line from the curb stop to the building is considered private property and is the responsibility of the property owner.

Known and Probable LSLs

The tables below provide information about the estimated number of LSLs serving the customers of Bellaire Water. The year the structure was built, the year plumbing material was installed, or staff knowledge determines which category it falls into.

Public LSL Probability				
Value	Public Lines #	% of System		
Non-Lead	646	28.47%		
≤ 8% Lead Alloy	42	1.85%		
Very Low (1981-1997)	71	3.13%		
Mild (1951-1980)	115	5.07%		
Moderate (1921-1950)	251	11.06%		
Unconfirmed Public LSLs (1825-1920)	1002	44.16%		
Confirmed Public LSLs	47	2.07%		
No Data	95	4.19%		

Updating Service Lines with Mobile Apps

Collector Application

LEGEND **Private Well Types** Public Water (1995) SIZE_inches -0.75Parcels_2019 House Built RCAP_YrBuilt_Range 1800-1920 1921-1986 1987-2014 2015-2018 **W**UNKNOWN

www.RCAP.org

RCAP Contacts:

Ted Stiger

Sr. Director of Government Relations & Policy

tstiger@RCAP.org

Jeff Oxenford

Director of Technical Services & Training

joxenford@rcap.org